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Abstract
The quantum-electrodynamic binding energies B are determined perturba-
tively to order (nα)2 for single macroscopic bodies (quasi-continua mim-
icking atomic solids) having the dispersive dielectric function ε(ω) �{
1 + 4πnα	2/

(
	2 − (ω2 − i0)2

)}
, as if each atom were an oscillator of fre-

quency 	, and n the number density of atoms (pairwise separations ρ). The
familiar divergences all persist although they are modified by dispersion (finite
rather than infinite 	); they must be controlled instead by imposing the con-
dition ρ > λ ∼(minimum lattice spacing) �c/	. QED gives identically the
same B = −(nα)2(1/2)

∫ ∞
λ

dρ ρ2f (ρ)g(ρ) as one obtains from the properly
retarded attraction −α2f (ρ) between atoms, with g(ρ) a correlation function
defined purely by the geometry of the body. The first three terms of the Taylor
series for g are determined, respectively, by volume V , surface area S and any
sharp edges. To order (nα)2, but not beyond, the results for solid bodies lead
directly to those for cavities of the same shape and size in otherwise unbounded
material.

Unlike the attraction between disjoint bodies, B for any single finite body
(typical linear dimensions a � c/	) is dominated by components proportional,
respectively, to (nα)2h̄	 × {−V /λ3, +S/λ2, −a/λ (if there are edges) and
± log(c/2	λ)}. These always tend to induce collapse rather than expansion.
The pure Casimir components are of order (nα)2h̄c/a, and (like the logarithmic
terms) sometimes positive, which makes them impossible to understand if the
dominant terms are disregarded. The B are found in closed form for spheres,
spherical shells and cubes, up to corrections vanishing with λ. For unit length
of an infinitely long right circular cylinder of radius a, the standard V - and S-
proportional terms are corrected only by −(nα)2(π2h̄	/128a) log(c/2	λ); the
pure Casimir component, which would be proportional to (nα)2h̄c/a2, vanishes
through apparently accidental cancellations peculiar to order (nα)2.

PACS numbers: 1220, 1110, 0230, 0365
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1. Introduction

Casimir energies in a general sense stem from the quantum-mechanical interaction of the
electromagnetic field with macroscopic bodies modelled as continua. More narrowly, we shall
describe as pure Casimir terms those components of such energies that (a) depend only on the
electrostatic polarizability of the material, and (b) for finite bodies are proportional1 to h̄c/a,
where a is some length characterizing the geometry of the body, for example the radius of a
sphere or the edge-length of a cube. (For an indefinitely extended cylinder, the pure Casimir
terms are those proportional to h̄c/a2 per unit length.) Such effects are often thought glamorous
because they are ascribed to the total zero-point (ground-state) energy

∑
i ωi/2 of the system,

where the ωi are the frequencies of the classical normal modes, affected by the bodies through
the matching conditions on the field at their surfaces. In practice

∑
i is shorthand for an integral

or a sum of integrals, which always diverge. Traditionally this is remedied by introducing a
cutoff (a convergence factor), for example exp(−λ̃ω), which suppresses the contribution of
high frequencies; calculating whatever observable one requires; and taking the no-cutoff limit
λ̃ → 0, exp(−λ̃ω) → 1 at the end. Those components of the ground-state energy that would
become infinite in this limit we call (nominally) divergent; those that remain finite we call
convergent, and those that vanish in the limit we shall drop without further comment. In all the
examples we study it turns out that the convergent components are precisely the pure Casimir
terms.

The justification usually advanced for this procedure cites the fact that real materials,
being dispersive, become transparent at high frequencies, and then claims that, in consequence,
modes with ω > 1/λ̃ remain essentially unaffected by the bodies, whence their contributions
could have been ignored in the first place. We shall see that as regards the self-energy of
any single connected body (as opposed to the potential between mutually disjoint bodies)
this argument is wrong on both counts: transparency at high frequencies does not eliminate
divergences; and the physics is dominated by the divergent components of the energy, the pure
Casimir terms being so much smaller that they will never become observable.

Indeed, insofar as the classic papers are devoted largely to perfect reflectors, they can
cause confusion in three ways. (i) In the original problem of two parallel mirrors, they manage
to get the correct attractive energy by sidestepping divergent terms altogether2, fostering a
presumption that divergences should be irrelevant quite generally, whereas for connected
bodies they are not. (ii) Thus encouraged, they eliminate divergences from the energy of
the spherical shell (perhaps the simplest of connected bodies), producing a finite pure Casimir
energy which taken by itself happens to be repulsive. This is commonly perceived as strange, in
that total enclosure of a finite region inside the shell appears to raise the energy, whereas partial
enclosure of an infinite region between parallel mirrors had appeared to lower it3. (iii) They
are liable to mislead simply through having started directly in the limit of perfect reflection,
whereas the physics becomes visible only as this limit is approached.

1 We shall use natural units h̄ = 1 = c, and rationalized Gaussian units for the Maxwell field. Polarizability is
defined so that in an atom an electric field E induces a dipole moment αE and a Stark shift −αE2/2, while in a
volume element dV it induces a moment E dV (ε − 1)/4π . These dispositions of 4π preserve the traditional form
−23α2/4πρ7 of the long-range interatomic potential.
2 This is the approach extended to disjoint imperfect reflectors in the so-called Lifshitz theory, lucidly discussed by
Milonni (1994).
3 The pure Casimir energy for the shell was found by Boyer (1968). It was confirmed by Davies (1972), the first
to note that the positive sign was paradoxical not only by contrast with parallel mirrors, but because it should apply
equally to shells made of ordinary materials, whose molecules attract rather than repel each other. Though echoes
of his observation are discernible in the papers of Candelas (1982) and of Ambjorn and Wolfram (1983), it was,
unfortunately, not followed through at the time. For further references on spheres see section 7.
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On the other hand, more recent work has repeatedly addressed
∑

i ωi/2 for imperfectly
reflecting dielectric spheres, deploying considerable sophistication with Bessel functions in
order to master the normal modes, and also with (mainly dimensional) regularization methods
in order to eliminate divergences. For relative simplicity, many such calculations take the
material as optically dilute (ε − 1 � 1) and also as nondispersive (ε independent of ω). But
under these conditions it is far easier to obtain the ground-state energy as a perturbative shift
relative to the true vacuum (Maxwell field in empty, body-absent space), with the coupling
between body and field treated as the perturbation. That is what we shall do, exploiting the
further advantage of perturbation theory, that it can deal with dispersive materials just as easily
as with nondispersive ones. Furthermore, perturbation theory is so tightly constrained as to
be almost foolproof, with answers explicit to a point where the underlying physics, especially
the status of cutoffs, becomes unmistakeably obvious.

Accordingly, we adopt a model designed to mimic optically dilute atomic solids, working
only to order (nα)2 � 1, with n the number density of atoms and α the electrostatic atomic
polarizability. Each atom is treated as a simple harmonic oscillator, so that its dynamic
polarizability reads

α(ω) = α	2/
(
	2 − (ω2 − i0)2

)
(1.1)

with 	 the renormalized frequency. The dielectric function

ε(ω) � 1 + 4πnα(ω)

is perfectly causal (i.e. compatible with the Kramers–Kronig relation), becoming nondispersive
in the limit 	 → ∞. On the other hand, acccording to the Clausius–Mossotti formula
ε = (1 + 8πnα/3)/(1 − 4πnα/3), perfect reflection at ω = 0 (an infinite dielectric constant)
ensues for nα = 3/4π , obviously out of reach under our assumptions4.

Applied to this model, quantum-electrodynamic perturbation theory shows that the energy
shift �E(1) of order nα (formally of order e2) is just the sum of the individual atomic Lamb
shifts, which we disregard (see e.g. Milonni et al 1999 and references there). What we require
is the shift �E(2) of order (nα)2 (formally of order e4): eventually, �E(2) turns out to be
identically the same as the binding energy B of the body calculated from pairwise (‘additive’)
potential energies d3r d3r ′ U(ρ) between any two volume elements at r, r′. Here

ρ ≡ r − r′, U(ρ) = −(nα)2f (ρ), [f ] = [L]−7 (1.2)

and α2f (ρ) is the standard dipole approximation to the interatomic potential; f modulates
from fVdW ≡ 3	/4ρ6 in the nonretarded Van der Waals (VdW) regime, where ρ	 � 1, to
fCP ≡ 23/4πρ7 in the fully retarded Casimir–Polder (CP) regime, where ρ	 � 1, so that
formally this regime can be stretched to all ρ by taking the prior nondispersive limit 	 → ∞.

It is these binding energies that we calculate. Clarity and efficiency depend on writing each
B as proportional to a convolution

∫ ∞
0 dρ ρ2f (ρ)g(ρ) of f (ρ) with a two-point correlation

function g(ρ) determined purely by the geometry of the body. Remarkably, the first few
coefficients in the Taylor series for g(ρ) are dictated by the volume V , the total surface area S

and the local geometry of the surface, in particular by the principal radii of curvature and the
opening angles � of any sharp edges.

Given additive potentials, i.e. accurately to O(nα)2 but not beyond (Milonni and Lerner
1992), our task is simplified by the cavity theorem, which expresses the energy of a cavity in
terms of the energy of a body having the same shape and size.

4 Nor can we address media having refractive index
√

εµ = 1 at all frequencies, because we cannot afford to
treat dispersion too unrealistically, while models yielding such µ would imply magnetic contributions to U quite
inconceivable for real atoms (see e.g. Au 1972, Power 1974, Salam 2000, Farina et al 2000). Lastly, we consider only
zero temperature, and only three-dimensional space.
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Subject to the cutoff envisaged above, perturbation theory yields �E(2), initially, in the
form − ∫∫

d3k1 d3k2 exp
[−λ̃(k1+k2)

]
. . . , with the dots representing squared matrix elements

and energy denominators. This is the form originally considered by the writer (Barton 1999,
to be referred to as I) while trying to deal with nondispersive materials. It leads to a potential
f (ρ, λ̃) which correctly reproduces fCP at large ρ, but tends to a finite limit as ρ → 0. Such
behaviour might be deemed to tally with the traditional role of 1/λ̃ as a mere placeholder for
some transparency parameter like 	; but for the small values of ρ that dominate B it is far
too unrealistic to be trusted. One can see this by applying the same cutoff prescription to the
potential between point charges rather than atoms: the Coulomb potential would be modified,
not Yukawa-like at large distances in some manner interpretable through screening, but by
replacing its 1/ρ singularity as ρ → 0 with a constant limit of order 1/λ̃. On the other hand,
without the cutoff the convolution for B makes no sense, because f (ρ → 0) ∼ 1/ρ6 would
cause it to diverge at its lower limit.

Fortunately, the solution to the problem is obvious from the context: abandon fictitious
frequency cutoffs like exp(−λ̃ω), revert to the true f (ρ), and remedy the divergence in B

by adopting a purely geometric restriction ρ > λ, where λ is the minimum distance between
atoms, comparable to the radius of the repulsive core of the interatomic potential. One need
merely rewrite the convolution as

∫ ∞
λ

dρ ρ2f (ρ)g(ρ), convergence being secured not by a
vain appeal to dispersion, but by this minimal recognition that real materials are atomically
granular rather than truly continuous. In particular, the new cutoff length λ is far shorter
than the traditional λ̃, roughly in the ratio of atomic radius to typical excitation wavelength.
Nominal divergence is redefined as divergence in the hypothetical limit λ → 0.

The energies B of finite bodies emerge, to order (nα)2, in the form

V u + Sσ +
∫

dL ζ(�(L)) + (s–d) + (pure Casimir)

where u < 0 is the binding-energy density in unbounded material; σ > 0 is the surface
tension;

∫
dL ζ < 0 runs over any sharp edges and the shape-dependent term (s–d) depends

only on the shape and not on the size of the body. All but the pure Casimir terms diverge, with
u ∼ 	/λ3, σ ∼ 	/λ2, ζ ∼ 	/λ and (s–d) ∼ 	 log(1/2	λ) respectively. The nondispersive
limit taken at the outset (entailing f → fCP for all ρ) would aggravate these divergences to
1/λ4, 1/λ3, 1/λ2 and 1/λ respectively. However, it makes no sense to try and identify separate
retarded and VdW contributions to f and thereby to B. On the formal level, f changes
perfectly smoothly between the two regimes. More to the point, only in the Coulomb gauge
can one ascribe the familiar nonretarded potential fVdW wholly to the unquantized longitudinal
field, with retardation corrections calculated separately as effects of the quantized transverse
field; whereas after a gauge change from minimal to ‘d · E’ coupling, the interaction with
the quantized transverse field delivers the correct f (ρ) for all ρ through one and the same
calculation.

Since B is dominated by V u + Sσ , it always tends to induce contraction rather than
expansion; from this point of view the signs of the pure Casimir terms are irrelevant, simply
because these terms are so much smaller. On the other hand, V u and Sσ are standard features
of condensed-state physics, and one might reasonably choose to adopt a renormalization
procedure which absorbs our calculated u and σ into the measured values of these quantities.
This would leave one free to concentrate, if one wished, on the other components of B; but
then one must remember that the physically dominant energies have been removed from view,
and not read paradoxes into the signs of those that are left visible. Thus, renormalization in
the (only) sense appropriate to Casimir effects is not in any way analogous to renormalization
in conventional quantum field theory. Regarding the latter, one knows from the outset that the
divergences one encounters are spurious, and the only problem is to eliminate them as quickly
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as possible. Regarding the former, it may be convenient to organize a calculation so that the
nominal divergences are standardized and isolated; but they must be properly evaluated and
borne in mind, because they embody essentials of the physics.

To substantiate this summary, we shall determine the Casimir energies of spheres and
spherical shells, cubes and right circular cylinders (radius a, infinite length L). Spheres
are the simplest connected shapes. The results for cubes serve to discourage premature
generalization from spheres, and feature the simplest-to-calculate contributions from sharp
edges. Cylinders furnish a classic example of the failure of plausible anticipation: one finds
[B − (V u + Sσ)] /L ∼ −(nα)2(	/a) log(1/2	λ), divergent yet proportional to 1/a, and
with no pure Casimir term at all.

The rest of this paper is laid out as follows.
Section 2 spells out the potential (1.2) and the provenance of the cutoff λ; and quotes (from

appendix A) the moments JN (λ) ≡ ∫ ∞
λ

dρ f (ρ)ρN , which prove central because all nominal
divergences enter through the JN (λ) with N from 1 to 5. Just how, to order (nα)2, the potential
does duty for quantum field theory is explained, somewhat pedantically, in appendix E; while
appendix F cites measured properties of solid argon to show that working only to this order
can be quite reasonable.

Section 3 proves the cavity theorem. Appendix B demonstrates the equally important
fact that the theorem fails for non-additive (eg three-body) potentials, whose contributions can
matter to order (nα)3 and beyond: for instance, the Casimir energies of strongly reflecting
solid spheres fail to reveal the Casimir energies of spherical cavities cut into the same material.

Section 4 explains the renormalization procedure for the total energy B. The two
strongest divergences, proportional to J2(λ) and J3(λ), are absorbed by redefinitions of u

and σ respectively; others are assigned to the renormalized energy �B. Only for parallel-
plane geometries is �B wholly convergent; for spheres and cubes it retains shape-dependent
divergences proportional to J5(λ); sharp edges produce stronger divergences proportional to
J4(λ). The crucially important two-point correlation function g(ρ) is discussed in section 5.
The first few terms of its Taylor series determine what divergences occur, and govern the role
of the JN (λ). These terms are derived in appendix C, with the edge-dependent function ζ(�)

by far the most awkward.
The tools thus provided are used in sections 6–10 to determine �B for gaps between half-

spaces, spheres, spherical shells and cubes. (Section 9 is a brief digression on an infinitesimally
thin but finite-mass spherical shell, calculating the forces directly, instead of leaving them
implicit in the expression for B, as we leave them everywhere else.) Section 11 considers the
right circular cylinder, with remarkable results we have already mentioned. Unlike spheres
and cubes, cylinders are not finite bodies; this makes the technicalities quite challenging, and
they have been relegated to appendix D.

With our main conclusions already outlined in this section, and verified in the sequence
just laid out, the final section 12 re-states them only briefly and dogmatically; then it closes
with some general comments, including one on deceptive folklore about perfect reflectors.

2. The potential

In our continuum model, the mutual potential energy of two volume elements is given by (1.2),
with

f (ρ) = 	4

πρ3

∫ ∞

0
dx exp(−2x)

h(x)[
x2 + (	ρ)2

]2 , h(x) = 3 + 6x + 5x2 + 2x3 + x4. (2.1)
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The function f (ρ) is derived for example by Feinberg et al (1989) and by Power and
Thirunamachandran (1985, 1994). It can be expressed in terms of Ci(M) ≡ − ∫ ∞

M
dt cos(t)/t

and si(M) ≡ − ∫ ∞
M

dt sin(t)/t as

f = −32	7

πM4

∂

∂M

{
1

M
hop [sin MCi(M) − cos Msi(M)]

}
, M ≡ 2	ρ (2.2)

hop ≡ 3 − 3M
∂

∂M
+

5

4
M2

(
∂

∂M

)2

− 1

4
M3

(
∂

∂M

)3

+
1

16
M4

(
∂

∂M

)4

. (2.3)

As explained in section 1, we impose a cutoff

f (ρ < λ) = 0, 	λ � 1.

This, though a fiction, is a convenient shortcut to somewhere near the truth. At small
separations, overlap between the electron clouds makes the interatomic potential highly
repulsive, i.e. large and positive rather than zero. In the limit of an infinitely hard core,
atoms cannot approach each other closer than the core radius λ. Hence, for real materials
(as opposed to continuum models) the correlation function g(ρ), to be introduced presently,
should vanish for ρ < λ; and so should the product gf , the only combination through which f

ever enters. The consequences are the same as if f itself were cut off, in the way just written.
The product 	λ is small because λ is of the order of the interatomic spacing, while 2π/	 is
a typical emission wavelength: for solid argon appendix F estimates 	λ ∼ 0.014.

Since we rely on a hard-core potential, we cannot sensibly consider variations of density,
and must treat n as fixed. Thus, given a fixed amount of material, the total volume V is also
fixed. Moreover, by disregarding crystal structure the model disregards rigidity. The upshot is
that the energies we shall calculate cannot easily yield the local stresses for which they must
ultimately be responsible.

In the VdW regime 	ρ � 1 one has

f = 	

ρ6

{
3

4
− 1

4
(	ρ)2 +

7

6π
(	ρ)3 − 3

4
(	ρ)4

+
1

15π

[
44 log

(
1

2	ρ

)
− 44γ +

607

15

]
(	ρ)5 + · · ·

}
(2.4)

where γ = Euler’s constant �0.577. The leading term is

fVdW ≡ CVdW	/ρ6, CVdW ≡ 3/4. (2.5)

In the CP regime 	ρ � 1 one has

f = 1

πρ7

{
23

4
− 129

4

1

(	ρ)2
+

1917

4

1

(	ρ)4
− 24 075

2

1

(	ρ)6
+ · · ·

}
. (2.6)

Here we write the leading term as

fCP ≡ CCP/ρ7, CCP ≡ 1

π

∫ ∞

0
dx exp(−2x)h(x) = 23/4π; (2.7)

it emerges from (2.1) on replacing
[
x2 + (	ρ)2

]2 → (	ρ)4.
The nondispersive version of our model has α(ω) = α at all frequencies however high,

as if the restoring forces specified in appendix E.2 were arbitrarily strong. Formally it is
obtainable by taking the limit 	 → ∞ right at the start, which replaces f (ρ) by fCP(ρ) at all
values of ρ. We call this limit ‘formal’ because it misrepresents the physics quite significantly:
for instance, it will be seen to turn logarithmic divergences into linear (	 log(1/λ) into 1/λ),
linear into quadratic and so on.



Perturbative Casimir energies of dispersive spheres, cubes and cylinders 4089

By contrast, we cannot implement the opposite limit 	 → 0 (no restoring forces), because
the electromagnetic response of delocalized charge carriers (e.g. of the electron plasma in
metals5) is so utterly different from that of insulators. Mathematically, the difference is
reflected by the fact that at ω = 0 the polarizability of a plasma has a pole, incompatibly
with the implication of (1.1) that lim	→0 nα(ω) = 0.

Crucial to all our calculations are the moments

JN (x) ≡
∫ ∞

x

dρ f (ρ)ρN , [JN ] = [L]−6+N . (2.8)

Since f (ρ → ∞) ∼ CCP/ρ7, the JN�6 would diverge. If (wrongly) fVdW were retained as
ρ → ∞, then there would be a divergence already in J5.

In the CP regime one evaluates the JN with f from (2.6); the leading terms are

JN (x) ≈
(

CCP

6 − N

)
1

x6−N
. (2.9)

The VdW regime 	x � 1 includes x = λ, for which we quote from appendix A:

J1(λ)/	5 = 3

16

(
1

	λ

)4

− 1

8

(
1

	λ

)2

+
7

6π

(
1

	λ

)

+

[
−3

4
log

(
1

2	λ

)
+

3γ

4
− 1

8

]
+ O(	λ) (2.10)

J2(λ)/	4 = 1

4

(
1

	λ

)3

− 1

4

(
1

	λ

)
+

[
7

6π
log

(
1

2	λ

)
− 7γ

6π
+

35

36π

]
+ O(	λ) (2.11)

J3(λ)/	3 = 3

8

(
1

	λ

)2

+

[
−1

4
log

(
1

2	λ

)
+

γ

4
− 3

16

]
+ O(	λ) (2.12)

J4(λ)/	2 = 3

4

(
1

	λ

)
− 11

8π
+ O(	λ) (2.13)

J5(λ)/	 = 3

4
log

(
1

2	λ

)
− 3γ

4
+

65

32
+ O(

	λ log(1/	λ)
)
. (2.14)

For example, the energy density u in an unbounded medium reads

u ≡ 1

2

∫
d3ρ U(ρ) = − (nα)2 2πJ2(λ) � − (nα)2 π

2

	

λ3
. (2.15)

Next, the surface tension σ (energy per unit surface area) can be identified from the special
case of a halfspace, by adding up the potential deficiencies of volume elements at a depth z

below the surface, as compared with elements at infinite depth. One finds

σ ≡ 1

2
(nα)22π

∫ ∞

0
dz

∫ ∞

z

dρ ρ2f (ρ)

∫ 1

z/ρ

d cos θ = (nα)2 π

2
J3(λ) � (nα)2 3π

16

	

λ2
.

(2.16)

A third quantity of a somewhat similar kind is the energy per unit length of a long sharp edge,
given by

ζ(�) = −(nα)2 1

3
Z(�)J4(λ) � − (nα)2 1

4
Z(�)

	

λ
, Z(�) ≡ 1 +

(π − �)

tan(�)
(2.17)

where � is the angle of the edge (see figure C.1): note the relation ζ(�) = ζ(2π − �),
which tallies with the cavity theorem proved in the next section. The correlation function g(ρ)

5 A nonrelativistic model of metals is considered elsewhere, without recourse to perturbation theory (Barton 1979).
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defined in section 5 leads to all these parameters systematically: to u and σ almost at once,
with ζ(�) deferred to appendix C.

Loosely speaking, the signs of u, σ, ζ alternate because σ corrects for fewer neighbouring
volume elements near a surface, while ζ corrects for fewer neighbouring surface elements near
an edge. Since σ is positive, it tends to minimize surface area. Since ζ is the same whether the
wedge is convex or concave, and varies from ζ(0) = −∞ to ζ(π) = 0, it tends to minimize
�, i.e. to close wedges of either kind6.

3. The cavity theorem

3.1. Definitions and statement

Define the characteristic function of a material body by

χ(r) =
{

1 inside

0 outside.

Binding energies are called B:

Bb ≡ B(body) = 1
2

∫ ∫
d3r d3r ′ χ(r)χ(r′)U(ρ). (3.1)

Then, formally,

B(unbounded medium) ≡ B∗ = (total volume) × u ≡ V ∗u

where V ∗ and therefore B∗ are of course infinite.
We write the total energy of a body (suffix b as above) occupying a region with volume

V and surface area S as

Bb ≡ V u + Sσ + �Bb. (3.2)

The corresponding system consisting of unbounded medium but with the region formerly
occupied by the body now empty is called a cavity (suffix c). The energy Bc of this system is
infinite, but we define an associated finite energy

Bc − B∗ ≡ −V u + Sσ + �Bc. (3.3)

To appreciate the significance of �Bc, consider two systems, (i) a very large solid body, and
(ii) the same body containing, deep inside, a much smaller cavity c of volume V and surface
area S, plus a second solid body b removed arbitrarily far from the first, having the same shape
and size as the cavity. Their energy difference is

E(ii) − E(i) � 2Sσ + �Bb + �Bc.

Theorem. To order (nα)2 one has

�Bc = �Bb ≡ �B. (3.4)

Appendix B shows that to order (nα)3 the theorem fails on account of three-body
interactions. On the other hand, for strictly homogeneous media, i.e. assuming strictly constant
n, the two-body interactions U(ρ) respect the theorem exactly: for instance, violations to order
(nα)4 can in that case stem only from four-body forces, and not in any sense from the U(ρ)

6 In this respect wedges of perfectly reflecting materials behave similarly: Brevik and Lygren (1996) calculate that
the outward stress normal to the surface is proportional to

[
(π/�)2 + 11

] [
1 − (π/�)2], i.e. positive for concave

and negative for convex wedges (their α is our �). Their full expressions agree with those of Deutsch and Candelas
(1979), but differ from those of Lukosz (1973), who claims moreover that wedges tend to open rather than to close.
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acting twice. The assumption is one that our model shares with all treatments of Casimir
effects for continua. By contrast, in real (granular) materials the operative correlation function
itself becomes dependent on the two-body forces, a dependence that is then transmitted to the
analogue of gU , causing the energy B to acquire terms of second and of higher orders in U .
This paper allows for such terms only indirectly, insofar as they validate the cutoff λ.

3.2. Proof

Let (in) specify the interior and (out) the exterior of the body, so that

(in) + (out) = (all space).

Recall that the system called the cavity is defined as the region (out) filled with medium, plus
the region (in) empty.

The infinite energy B∗ can be written formally as

B∗ = V ∗u = 1
2

∫
(in)+(out)

d3r

∫
(in)+(out)

d3r ′ U(r − r′)

= 1
2 (in, in) + 1

2 (out, out) + (in, out) (3.5)

using the obvious notation

(in, in) ≡
∫

(in)

d3r

∫
(in)

d3r ′ U(r − r′)

and so on. B∗ diverges because (out, out) diverges.
From its definition, u is independent of position. However, focusing on some arbitrary

point r of (in), we see that

u(r) = u = 1
2

{∫
(in)

d3r ′ U(r − r′) +
∫

(out)
d3r ′ U(r − r′)

}
. (3.6)

Integration over (in) yields

V u = 1
2 (in, in) + 1

2 (in, out). (3.7)

Note the factor 1/2 of the second term.
For the energies Bb and Bc one has

Bb = 1
2 (in, in) ≡ V u + Sσ + �Bb (3.8)

Bc = 1
2 (out, out) (3.9)

whence

Bc − B∗ = 1
2 (out, out) − {

1
2 (in, in) + 1

2 (out, out) + (in, out)
}

= − 1
2 (in, in) − (in, out) ≡ −V u + Sσ + �Bc. (3.10)

Eliminating (in, out) and (in, in) from (3.7), (3.8) and (3.10) we find

−V u + Sσ + �Bc = − 1
2 (in, in) − {2V u − (in, in)} = 1

2 (in, in) − 2V u

= {V u + Sσ + �Bb} − 2V u = −V u + Sσ + �Bb ⇒ �Bc = �Bb. (3.11)

�
We stress that the theorem holds for any translation-invariant and symmetric potential

U(r, r′) = U(r′, r) for which the integrals (in, in) and (in, out) converge, and for bodies and
holes of any shape.
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4. Renormalization

By renormalization we mean only that the components (±V u + Sσ) of the total energy are
identified and displayed separately. All other components are assigned to the renormalized
energy �B: sections 6–11 will show that they can be of very different kinds.

We call (nominally) divergent those expressions that, like u and σ , would diverge in the
wholly hypothetical limit λ → 0. They include s–d terms, which tend to distort simple shapes
rather than to change sizes. Pure Casimir terms are defined as convergent (hence independent
of λ) and independent of 	; for finite bodies they must on dimensional grounds be inversely
proportional to linear size parameters, for example to 1/a with a the radius of a sphere or the
edge-length of a cube. For parallel-sided slabs, �B consists wholly of pure Casimir terms; for
spheres it contains divergent s–d terms as well; for cubes, the edges contribute to �B further
divergent terms proportional to a	/λ, which are not absorbed by renormalization but do
nevertheless depend on size as well as on shape. Likewise, �B per unit length of an infinitely
long right circular cylinder of radius a is proportional to (	/a) log(1/2	λ), entangling a, 	

and λ so that no simple prescription and certainly no power-series in λ can unravel them.
Here it bears repeating, from section 1, that one cannot afford to ignore any components

of B, convergent or divergent. Attempts to discard divergent components (often sight
unseen) probably stem from confusing physically appropriate renormalization with the purely
mathematical tools of dimensional or zeta-function regularization familiar elsewhere in field
theory.

Finally it may be worth spelling out why, in contrast to (±V u + Sσ), we assign the
edge-governed divergences to the renormalized component �B. The reason is simply that
condensed-state physics regards u and σ as standard material properties, but concedes no such
status to ζ(�). Admittedly it remains a matter of taste whether this is regarded as a difference
of principle or merely of practice; but in practice it would certainly be bewildering to introduce
a renormalization scheme with infinitely many different counterterms to allow for any of the
infinitely many different opening angles � that sharp edges can have. Similar arguments apply
to s–d terms.

5. The correlation function g(ρ)

5.1. Definition

It proves convenient to express the total binding energy as a convolution of the potential with
another function determined purely by the geometry of the body:

B = −(nα)2 1
2

∫ ∫
d3r d3r ′ χ(r)χ(r′)f (ρ)

= − (nα)2 1
2

∫ ∫
d3r d3r ′

∫
d3ρ δ(r′−r − ρ)χ(r)χ(r′)f (ρ)

B = −(nα)2 1
2

∫
d3ρ f (ρ)g̃(ρ) = −(nα)2 1

2

∫ ∞

λ

dρ f (ρ)ρ2g(ρ) (5.1)

where we have defined an auxiliary function

g̃(ρ) ≡
∫ ∫

d3r d3r ′ χ(r)χ(r′)δ(r′ − r − ρ) (5.2)

and the two-point correlation function

g(ρ) ≡
∫

d	ρ g̃(ρ) =
∫ ∫

d3r d3r ′ χ(r)χ(r′)
∫

d	ρ δ(r′ − r − ρ). (5.3)
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The best way to g̃ is often through the form factor F of the body:

g̃(ρ) ≡
∫

d3k

(2π)3
exp(−ik · ρ) |F (k)|2 , F (k) ≡

∫
d3rχ (r) exp(ik · r). (5.4)

Notice [g̃] = [g] = [L]3. There is an obvious pictorial interpretation of (5.3): draw a
spherical shell of radius ρ, centred on an interior point r; determine the solid angle subtended
at r by that part of the shell that is inside the body; and integrate the result over the interior
with respect to d3r .

5.2. Examples

For unbounded space, the definition of g as verbalized just above yields

g(ρ) = 4π

∫
d3r = 4 πV ∗ (unbounded space). (5.5)

For the half-space z > 0, it yields

g(ρ) =
∫ ∫

dx dy

∫ ∞

0
dz {3(z − ρ)4π + 3(ρ − z)2π(1 + z/ρ)}

= S

{
4π

∫ ∞

0
dz − πρ

}

g(ρ) = 4πV − πSρ, S = A ≡
∫ ∫

dx dy (half-space)

(5.6)

where S is the surface area, and V = A
∫ ∞

0 dz = V ∗/2 the volume. The Heaviside step-
function is defined as

3(z > 0) = 1 3(z < 0) = 0. (5.7)

By contrast, for the slab −a/2 < z < a/2 it is already better to use (5.4) with

F (k) = (2π)2δ(kx)δ(ky)2 sin(kza/2)/kz,
[
(2π)2δ(kx)δ(ky)

]2 = A(2π)2δ(kx)δ(ky).

In terms of κ ≡ kz and of cos θ ≡ ρz/ρ this leads to

g̃(ρ)/A = 2

π

∫ ∞

−∞
dκ exp(−iκρ cos θ)

sin2(κa/2)

κ2

g(ρ)/A =
∫ 1

−1
2π d cos θg̃(ρ) = 8

ρ

∫ ∞

−∞
dκ

sin(κρ) sin2(κa/2)

κ3

= 3(a − ρ)π(4a − 2ρ) + 3(ρ − a)
2πa2

ρ

g(ρ) = 3(a − ρ) (4πV − πSρ) + 3(ρ − a)A
2πa2

ρ
(slab of width a)

(5.8)

where we have used V = Aa and S = 2A. Though singular at ρ = a, g is continuous:
g(a − 0) = g(a + 0).

Finally, for a sphere of radius a one can find g(ρ) either through an elementary integration
as in appendix A of I, or through its form factor:

F (k) =
∫

d3r 3(a − r) exp(ik · r) = 4π

k

[
sin(ka) − ka cos(ka)

k2

]
(5.9)
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g(ρ) ≡
∫

d	ρ

∫
d3k

(2π)3
exp(−ik · ρ) |F (k)|2

= 32π

ρ

∫ ∞

0

dk

k5
sin(kρ) [sin(ka) − ka cos(ka)]2

= 3(2a − ρ)π2

{
16a3

3
− 4a2ρ +

ρ3

3

}

g(ρ) = 3(2a − ρ)

{
4πV − πSρ +

π2ρ3

3

}
(sphere of radius a). (5.10)

Thus g is given by its Taylor series multiplied by a step function, making calculations far
simpler for the sphere than for finite bodies of any other shape.

5.3. The Taylor series

Write the series as

g(ρ) = g0 + g1ρ + g2ρ2/2! + g3ρ3/3! + · · · . (5.11)

For arbitrary regions with smooth surfaces, or with edges but no vertices, appendix C shows
that the leading coefficients are determined explicitly by the volume V of the region and by
the local geometry of its surface S (whose area we are likewise calling S).

First of all one finds, quite generally,

g0 = 4πV g1 = −πS (5.12)

just as the examples in section 5.2 might have suggested. The next coefficient is nonzero only
if the body has sharp edges:

g2 = 4
3

∫
dL ζ(�(L)) (5.13)

where ζ is given by (2.17), and the integral runs along all such edges, with dL the element of
edge length and �(L) the angle between the local tangent planes (see figure C.1). Lastly

g3 = π

16

∫
S

dS

[
3

R2
1

+
2

R1R2
+

3

R2
2

]
(smooth surface) (5.14)

where R1,2 are the principal radii of curvature. This expression applies only if R1,2 � λ, so
that one cannot find the contributions of edges and vertices by taking limits Ri → 0. In fact
the cube (section 10) shows that vertices make additional contributions to g3.

Notice that g3 is not determined by topology alone: the Gauss–Bonnet theorem (Coxeter
1969) reads

∫
S

dS/R1R2 = 2πχE, where χE is the Euler characteristic of the surface (e.g. 2
for a sphere and 0 for a torus).

5.4. Binding energies

For unbounded space, (5.1) and (5.5) immediately reproduce B = V ∗u with u from (2.15);
similarly, for a half-space, (5.1) and (5.6) reproduce B = (V ∗/2)u + Sσ with σ from (2.16).
But for finitely bounded bodies the correlation function has singularities at finite values of ρ,
so that it is not fully specified by its Taylor series alone. Nevertheless, by substituting (5.11)
into (5.1) we can identify all the divergent components of B, because they are governed by the
behaviour of fg as ρ → λ → 0, where the series does represent g. The substitution yields

B � −(nα)2 1

2

{
g0J2(λ) + g1J3(λ) +

1

2!
g2J4(λ) +

1

3!
g3J5(λ) + · · ·

}
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= − (nα)2 1

2

{
[4πV J2(λ)] − [πSJ3(λ)] +

[
1

2!

4

3

∫
dL Z(�(L))J4(λ)

]

+
1

3!

[
π

16

∫
dS

(
3

R2
1

+
2

R1R2
+

3

R2
2

)
+ (vertex contributions)

]
J5(λ) + · · ·

}
.

(5.15)

To exhibit the successive orders of magnitude, we estimate each moment by its leading
term, and the coefficients from the typical linear dimensions a of a (macroscopic) body or
cavity, with V ∼ a3, S ∼ a2,

∫
dL Z ∼ a and

∫
dS/R2 ∼ a0. This yields

B ∼ (nα)2	

{[
O

(a

λ

)3
]

+

[
O

(a

λ

)2
]

+
[
O

(a

λ

)
if there are edges

]

+O
[

log

(
1

	λ

)]
×

[(
explicitly known terms,

of O(1), from curved surfaces

)

+

(
terms not generally known,

of O(1), from vertices

)]
+ · · ·

}
(5.16)

with each [· · ·] smaller than the one before by the minuscule ratio λ/a of atomic λ to
macroscopic a; we reckon the logarithm, realistically, as of order unity. Pure Casimir energies,
not indicated above, depart from this pattern: being of order (nα)2/a, their ratio to the last
[· · ·] in (5.16) is of order 1/	a ∼ (excitation wavelength) /a � λ/a.

Notice finally that B has no terms linear in the 1/Ri , i.e. none proportional to
(	/λ)

∫
S

dS (1/R1 + 1/R2). This was foreseeable: they would violate the cavity theorem,
because for body and cavity the Ri have opposite signs. Smooth surfaces produce such
contributions only to higher-order correlation functions, relevant to the energy only to higher
than second order in (nα). This is illustrated by the component of �B that Candelas7 (1982,
equation (1.10)) writes as EC

∫
S

dS (1/R1 + 1/R2) ∼ ECa. Using his (5.38), (5.40) and (5.41),
one can expand his EC in powers of nα. Then the terms of order nα and (nα)2 cancel in a
way which in that context appears quite fortuitous: one finds EC � (π2/32)(nα)3kC	, with
kC a wavenumber cutoff, comparable perhaps to our 1/λ. Candelas’s conclusion could be
incorporated into (5.16) by amending the third pair of square brackets to

O
(a

λ

)
×

[(
explicitly known terms

of O(1) from edges

)
+

(
unknown terms of O(nα)

from smooth surfaces

)]
. (5.17)

Admittedly, the correction of O(nα) in (5.17) might well exceed the entire next term in the
sequence (5.16). Their ratio is of order (nα) a/λ; but for solid argon for instance appendix F
suggests nα ∼ 0.04, likely to be overcompensated by a/λ. The same caution applies to
possible corrections of relative order (nα) to the other entries in (5.15) and (5.16). However,
here one is comparing terms that are not in competition, because they vary differently with a.

6. Gap and slab

These are related as cavity to body. Consider a gap of width a, with parallel sides each of
infinite area A, so that V = Aa and S = 2A. We deal with it ad hoc, the better to motivate
the systematic renormalization procedure developed in the next section a propos of spheres.

The total energy B is given by (5.1) with (5.8). For a > λ they yield

B/A = − (nα)2 π

2

{∫ a

λ

dρ f (4aρ2 − 2ρ3) +
∫ ∞

a

dρ f 2a2ρ

}
7 Candelas’s ωE, ωp, βE, αE are our 	, 	

√
4πnα, 	

√
1 + 4πnα, 	

√
1 + 2πnα. His cutoff procedure is completely

different from ours, so that it would make little sense to compare coefficients in detail.
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= − (nα)2
{[

2πaJ2(λ) − πJ3(λ)
]

+ π
[J3(a) − 2aJ2(a) + a2J1(a)

]}
. (6.1)

Inspection shows that the contribution from the first pair of square brackets is just −V u + Sσ ,
whence

�B(a)/A = − (nα)2 π
{J3(a) − 2aJ2(a) + a2J1(a)

}
(a > λ). (6.2)

Thus �B contains nothing but pure Casimir terms; unfortunately gap and slab seem to be
unique in this respect.

In the VdW regime, substitution from (2.10)–(2.12) into (6.2) yields

�B(a)/A � − (nα)2 π	

16a2

{
1 − 4(	a)2

[
log

(
1

2	a

)
− γ − 3

4

]
+ O

[
(	a)3 log

(
1

2	a

)] }
(6.3)

whose first term is well known. In the CP regime the JN (a) are evaluated using (2.6):

�B(a)/A � − (nα)2 1

a3

{
23

120
− 43

140

1

(	a)2
+ O

[
1

(	a)4

]}
. (6.4)

Perfect reflectors have �B(a)/A = −π2/720a3. For a crude and quite unwarranted
comparison one might substitute into the leading term of (6.4) the utterly nonperturbative
value nα = 3/4π = 0.239, which according to the Clausius–Mossotti formula entails ε → ∞.
This would turn the leading coefficient into (23/120)(3/4π)2 = 0.011, whose proximity to
π2/720 = 0.014 is probably fortuitous.

As the gap closes with a → 0 ⇒ a < λ, the step function 3(a −ρ) in g vanishes, leaving
one with

B/A = − (nα)2 π

2

∫ ∞

λ

dρ f 2a2ρ = − (nα)2 πa2J1(λ);
then the definition �B ≡ B + V u − Sσ = B + aAu − 2Aσ yields

�B(a)/A = −2σ + au − a2 (nα)2 πJ1(λ) (a < λ). (6.5)

Thus �B(0)/A = −2σ ; this is what one expects, because two half-spaces with a zero-
width gap between them constitute unbounded space, whence their mutual interaction must
identically cancel their surface energies.

7. Sphere

Equations (5.1) and (5.10) yield

B = −1

2
(nα)2

∫ ∞

λ

dρ ρ2f (ρ)g(ρ) = − (nα)2 π2

2

∫ 2a

λ

dρ fρ2

{
16a3

3
− 4a2ρ +

ρ3

3

}
.

(7.1)

To prepare B for renormalization we write∫ 2a

λ

dρ fρN =
{∫ ∞

λ

dρ −
∫ ∞

2a

dρ

}
fρN = JN (λ) − JN (2a). (7.2)

Then

B = − (nα)2

{[
8π2a3

3
J2(λ) − 2π2a2J3(λ)

]
+

π2

6
J5(λ)

− 8π2a3

3
J2(2a) + 2π2a2J3(2a) − π2

6
J5(2a)

}
; (7.3)
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the square brackets contribute precisely V u + Sσ , whence

�B = − (nα)2 π2

6
J5(λ) + (nα)2π2

{
8a3

3
J2(2a) − 2a2J3(2a) +

1

6
J5(2a)

}
. (7.4)

The leading term, with J5(λ), is shape-dependent: in particular it survives unchanged in the
limit a → ∞. The other three are pure Casimir terms; for macroscopic a � 1/	, they can be
approximated by evaluating the JN (2a) with the CP expansions (2.6) for f , as in deriving (6.4).
This leads to

�B � − (nα)2 π2	

8

{
log

(
1

2	λ

)
− γ +

65

24

}
+ (nα)2 π

a

{
23

96
− 43

960

1

(	a)2
+ · · ·

}
. (7.5)

Nondispersive models naturally produce quite different expressions. For instance, (7.1)
with f → 23/4πρ7 for all ρ > λ yields

B = (nα)2

{
− 23

8λ4
V +

23

24λ3
S − 23π

24λ
+

23π

96a

}
(nondispersive, cutoff ρ > λ) (7.6)

as already reported by Marachevsky (2000). Alternatively, one might as in I adopt a different
nondispersive potential f (ρ, λ̃), evaluated with an exponential cutoff exp(−λ̃k) in Fourier
space. This yields the expressions quoted in (E.6) and (E.7), which entail8

B = (nα)2

{
− 3

8λ̃4
V +

14π

45λ̃3
S − 4

5λ̃
+

23π

96a

}
(nondispersive, cutoff exp(−λ̃k)). (7.7)

For a perfectly reflecting and infinitesimally thin spherical shell the pure Casimir term, by
general consent, is �0.092/a. Derived by Boyer (1968) and confirmed by Davies (1972), it has
remained under study ever since: see e.g. Candelas (1982), Lambiase et al (1999), Leseduarte
and Romeo (1996), Bordag et al (1999), Klich (2000), Hagen (2000a) and references there,
Brevik et al (2000), Hagen (2000b) and Esposito et al (2000). The presence of a negative shape-
dependent divergence is emphasized by Candelas (1982), albeit he makes it linear instead of
logarithmic. Of course it is unclear just what physics one can learn by comparing particular
contributions to the energy of a shell with prima facie similar contributions to the energy of
a solid sphere or of a spherical cavity in an otherwise unbounded medium. Ignoring such
scruples, one might make the same crude comparison as in section 6: with nα = 3/4π the
pure Casimir term becomes 69/512πa = 0.043/a.

8. Finitely thin spherical shell

Consider a material shell with thickness t � R and radii b = R + t/2 and a = R − t/2.
By hindsight, start with a spherical cavity of radius b around a concentric solid sphere of

radius a. We adapt in an obvious way the notation of section 3.2 for double volume integrals,
and write the volume and surface of spheres with radii a, b as V (a), S(a) and V (b), S(b)

respectively. (Do not confuse the outer radius b with the suffix b for ‘body’.) Then, in view
of (3.3),

Bc(shell) = 1
2 (ρ > b, ρ > b) + 1

2 (ρ < a, ρ < a) + (ρ < a, ρ > b)

≡ −V (shell)u + S(shell)σ + �Bc(shell) + B∗. (8.1)

8 Before comparing expressions like (7.6) or (7.7) with (7.4) and (7.5), one would need to decide whether, in
nondispersive models, cutoff lengths should continue to be understood as of the order of the lattice spacing, or
whether they should be re-interpreted as of the order of the much longer optical wavelengths 1/	. For reasons
apparent in particular from appendix E.1, the writer thinks that the question is empty, because nondispersive models
are unreliable guides to the physics of connected bodies in the first place.
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Similarly
1
2 (ρ > b, ρ > b) = Bc(sphere, radius b) + B∗

≡ − V (b)u + S(b)σ + �Bc(sphere, radius b) + B∗ (8.2)
1
2 (ρ < a, ρ < a) = Bb(sphere, radius a)

≡ V (a)u + S(a)σ + �Bb(sphere, radius a). (8.3)

Combining (8.1)–(8.3) we note V (shell) = V (b) − V (a) and S( shell) = S(b) + S(a), and by
virtue of the cavity theorem �Bc = �Bb write the result as

�B(shell) = �B(sphere, radius a) + �B(sphere, radius b) + (ρ < a, ρ > b). (8.4)

From here on we consider only the CP regime t	 � 1. Then the final integral on the
right may be approximated by f (ρ) → −CCP/ρ7:

(ρ < a, ρ > b) � −CCP

∫
r<a

d3r

∫
r>b

d3r ′ 1

| r − r′ |7 = −CCP
4π2

15

a3(5b2 − a2)

(b2 − a2)3
. (8.5)

Whether the shell tends to expand or to collapse depends on its total energy Bb, which we may
now approximate by dropping, from terms of given order in 1/λ, corrections of relative order
1/	a etc:

Bb(shell)

(nα)2
� −4π(b3 − a3)

3

π	

2λ3
+ 4π(b2 + a2)

3π	

16λ2
− π2	

3

[
3

4
log

(
1

2	λ

)
− 3γ

4
+

65

32

]

+
23π

4

[
1

24

(
1

b
+

1

a

)
− 4

15

a3(5b2 − a2)

(b2 − a2)3

]
. (8.6)

Finally, expansion in powers of t/R yields

Bb(shell)

π2(nα)2
� − 	

λ3

[
2R2t +

t3

6

]
+

	

λ2

[
3R2

2
+

3t2

8

]
− 	

[
1

4
log

(
1

2	λ

)
− γ

4
+

65

96

]

+
23

4π

[
− 2R2

15t3
+

1

6t
+ O

(
t2

R3

)]
. (8.7)

The component proportional to R2/t3 is just the pure Casimir energy of a slab or gap of width
t and total area 4πR2; but internal cancellations have removed any visible reminder of the
1/R-proportional pure Casimir energies of spheres with radii near R, and there is no obvious
interpretation of the much larger term proportional to 1/t .

9. Pressure on infinitesimally thin spherical shell

Consider the further idealization of a spherical shell with radius R and thickness t → 0
⇒ t < λ (sic), but with fixed finite 9 ≡ 4π(nα)t (so that [9] = [L]). We calculate directly
the net pressure P experienced by the shell, incidentally sidestepping the difficulties, outlined
in section 2, of deriving stresses from energies. Along the same lines as in appendix D of I,
one finds

P =
(

9

4π

)2
π

R

{ − 2J1(λ) + (2R)2f (2R) + 2J1(2R)
}
,

reckoning outward pressure as positive. In the CP regime R	 � 1 this reduces to

P �
(

9

4π

)2 {
−3π

8

	

λ4R
+

161

640

1

R6

}
.

Again P is attractive, while the pure Casimir term is repulsive.
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10. Cube

Consider a cube with edge length a. Its form factor is F (k) = F1F2F3, where Fi =
(2/ki) sin(kia/2); then (5.4) yields

g̃ = 3 (a− | ρ1 |) (a− | ρ1 |) × 3 (a− | ρ2 |) (a− | ρ2 |) × 3 (a− | ρ3 |) (a− | ρ3 |) .

Thus the integration in g(ρ) ≡ ∫
d	ρ g̃(ρ) runs over part of the surface of a sphere of radius ρ,

namely the part that lies inside a concentric cube in ρ-space having edges of length 2a. For
ρ < a all of the sphere contributes; for a < ρ < a

√
2 one must subtract the portions

protruding from each face; for a
√

2 < ρ < a
√

3 this correction must itself be corrected for
overlaps between the protrusions across adjacent faces; while for ρ > a

√
3 the sphere lies

wholly outside the cube, so that g vanishes. Painfully, one obtains

g =




g(1) for ρ < a

g(2) for a < ρ < a
√

2

g(3) for a
√

2 < a
√

3
0 for ρ > a

√
3

(10.1)

g(1) = {
4πa3 − 6πa2ρ + 8aρ2 − ρ3

}
(10.2)

g(2) =
{

24a2ρ cos−1

(
a

ρ

)
− 8a

ρ

(
a2 + 2ρ2

)√
ρ2 − a2 +

π

ρ

(
6a4 − 8a3ρ

)
+

1

ρ

( − a4 + 6a2ρ2 + 2ρ4
)}

(10.3)

g(3) =
{

− 24
a2

ρ
(a2 + ρ2) cos−1

(
a√

ρ2 − a2

)
− 24a3 tan−1

(
a2

ρ
√

ρ2 − 2a2

)

+
8a

ρ

(
a2 + ρ2

)√
ρ2 − 2a2 +

π

ρ

(
6a4 + 4a3ρ + 6a2ρ2

)
− 1

ρ

(
5a4 + 6a2ρ2 + ρ4

)}
. (10.4)

In g(1) the first three terms are dictated through the Taylor series by the volume V = a3, the
surface area S = 6a2 and total edge length L = 12a (with opening angle � = π/2). By
contrast to (5.10) for the sphere, the shape-dependent term −ρ3 is now negative; presumably
it is governed just by the vertices, but the writer has not managed to determine the contribution
from vertices of arbitrary shape.

We write down B and renormalize it without further comment:

B = −(nα)2 1
2

∫ a
√

3

λ

dρ fρ2g

B = −(nα)2 1
2

{ ∫ ∞

λ

dρ fρ2g(1) −
∫ ∞

a

dρ fρ2g(1) +
∫ a

√
2

a

dρ fρ2g(2) +
∫ a

√
3

a
√

2
dρ fρ2g(3)

}

= − (nα)2 1
2

{[
4πa3J2(λ) − 6πa2J3(λ)

]
+ [8aJ4(λ) − J5(λ)]

+

[
−

∫ ∞

a

dρ fρ2g(1) +
∫ a

√
2

a

dρ fρ2g(2) +
∫ a

√
3

a
√

2
dρ fρ2g(3)

]}
. (10.5)

The first pair of square brackets contributes V u + Sσ ; the contents of the second pair depend
on both a and λ; the third contribute the pure Casimir terms. Accordingly

�B = −(nα)2 1
2

{
8aJ4(λ) − J5(λ)
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+

[
−

∫ ∞

a

dρ fρ2g(1) +
∫ a

√
2

a

dρ fρ2g(2) +
∫ a

√
3

a
√

2
dρ fρ2g(3)

]}
. (10.6)

As for any macroscopic a, the pure Casimir terms may be evaluated with f → CCP/ρ7.
The integrals are straightforward in principle but exceedingly tedious over region 3, especially
because MAPLE left to its own devices chooses some wrong branches for the inverse
trigonometric functions. Eventually one finds

−a

∫ ∞

a

dρ g(1)/ρ5 = π − 3 = 0.1416

a

∫ a
√

2

a

dρ g(2)/ρ5 = −13π
√

2/20 + 7
√

2/120 − 3π/10 + 19/5 = 0.0521

a

∫ a
√

3

a
√

2
dρ g(3)/ρ5 = 13π

√
2/20 − 9

√
2/8 − 19π/30 + 2

√
3/5 = 0.000 03

�B � −(nα)2

{
4aJ4(λ) − 1

2
J5(λ) +

23

4πa

[
2

5
+

π

30
− 8

√
2

15
+

√
3

5

]}
(10.7)

[· · ·] = 0.0969.

For the cube, unlike the sphere, the pure Casimir component of �B is attractive. By
contrast, for a perfectly reflecting thin-walled cubical box Lukosz (1971, 1973) and Ambjorn
and Wolfram (1983) give the pure Casimir energy as +0.0916/a, implying a sign change as
(nα)2 rises from zero (see also Actor 1994). Lukosz (1973) argues for an additional divergent
term a/3π;2

L, where ;L is his inverse cutoff frequency, analogous perhaps to our λ; this is
reminiscent of aJ4(λ) in (10.8), though here too the signs differ.

11. Right circular cylinder

We require B/L and �B/L, where L stands for the infinite total length of the cylinder (and
not, as elsewhere, for the length of some sharp edge). The crucial difference from spheres and
cubes is that cylinders contain pairs of elements arbitrarily far apart. On dimensional grounds,
pure Casimir components of the renormalized energy �B/L must be of order 1/a2, where a is
the radius. The calculation is laborious, and is relegated to appendix D; the result is decidedly
peculiar.

First, to order (nα)2 the pure Casimir terms vanish, though only by virtue of a cancellation
unheralded before the very end. For the potential −CCP/ρ7 this has been observed already by
Milonni (private communication 1999), and by Milton et al (1999).

Second, in contrast to the sphere, there is no purely shape-dependent term.
Third, the leading term of �B/L diverges as 	λ → 0 and yet depends on the radius a:

�B/L = − (nα)2 π2

32
J5(λ)

1

a
+ (terms vanishing as λ	 → 0 and a	 → ∞)

� − (nα)2 	

a

π2

128

{
log

(
1

2	λ

)
− γ +

65

24

}
. (11.1)

However, the total energy is dominated as always by V u + Sσ , tending to make the cylinder
contract regardless of the negative sign of �B.

A pure Casmir term will presumably appear to higher than second order in (nα). For a
perfectly reflecting thin cylindrical shell, DeRaad and Milton (1981) give it as −0.014/a2,
confirmed by Gosdzinsky and Romeo (1998); see also Lambiase et al (1999).
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12. Conclusions and comments

• Our principal conclusions regarding the perturbative Casimir energies of connected
macroscopic dielectric bodies, summarized once more and very briefly, are as follows.

(1) Dispersion cures no divergences, though it does affect degrees of divergence. It must
be built into the theory from the start.

(2) The physically appropriate way to eliminate divergences from continuum models is to
allow for the finite minimum separation between atoms.

(3) The nominally divergent components V u + Sσ of the energy dominate, and ensure
that Casimir effects always tend to induce contraction rather than expansion. Discarding these
components would make it impossible to understand the physics.

(4)There are other nominally divergent components besides. Some stem from sharp edges;
others, dependent only on the shape and not on the size of the body, stem from sharp vertices
and from the curvature of smooth parts of the surface.

(5) Pure Casimir terms may be defined as convergent components of the energy, depen-
dent only on h̄, c, the electrostatic polarizability of the material and the linear dimensions of
the body. Such terms govern the forces between disjoint bodies at large separations, but their
contributions to the binding energies of connected bodies are so small that they are impossible
to detect.

• If one tries to compare weak and strong reflectors, one must bear in mind an important
dichotomy: pairwise additive potentials dominate at short range where interactions are strong,
though the dipole approximation to f (ρ) may need amendment; while at long range, where
interactions are weak, the dipole approximation should be reliable, but non-pairwise-additive
interactions cease to be negligible. (For instance, the weakness of three-atom compared to
two-atom forces is partially offset by the fact that with rising separations the number of triplets
rises much faster than the number of pairs.)

Thus, paradoxically, perturbation theory is the natural way to a reasonable estimate of
the large (nominally divergent) components of the total binding energies B; whereas accurate
expressions for the far smaller pure Casimir components require, in practice, the nonpertur-
bative zero-point sums.

• The impossibility asserted in conclusion 5 stems from the obvious geometrical fact that no
connected body of given mass can change its shape or size without relative displacements
of adjacent atoms. These entail short-range energy changes proportional to typical atomic
excitation energies h̄	 multiplied by the cube or square of the ratio a/λ of macroscopic to
atomic lengths; by contrast, pure Casimir terms are proportional to h̄c/a; and no macroscopic
binding energy will ever be measured to an accuracy of

(h̄c/a) (λ/a)2/h̄	 = cλ2/	a3 ∼ (optical wavelength) × λ2/a3.

• Finally we demonstrate how easily attention can be diverted from nominally divergent but
physically essential terms by focusing on perfect reflectors exclusively or too soon. Such
reflectors exclude the Maxwell fields completely, encouraging one to believe that nothing has
been overlooked as long as the fields outside are described correctly. This belief tallies with
the fact that the finite parts of the zero-point energies

∑
i ωi/2 determined by considering only

the exterior fields do yield the archetypal Casimir attraction between parallel perfect mirrors.
Nevertheless the belief is false: plausible though it may appear when one contemplates

perfect reflection from the outset, it generally fails in the approach to this limit, which is
the only physically relevant way to idealize. Unfortunately, perturbation theory is not well
suited to investigating the various mechanisms of such failure, and experience suggests that
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it is unwise to generalize about them; hence we merely cite two examples, one with and one
without dispersion.

(i) It is well known that the zero-point Maxwell fields outside a flat perfect mirror generate
no surface energy, because the contributions from 〈E2〉 and 〈B2〉 are equal and opposite. But if
the material is modelled as a hydrodynamic plasma with a bulk plasma frequency ωp (reflecting
perfectly in the limit ω2

p → ∞), then it does possess a surface energy σ ∼ ωp/λ2, where 1/λ is
a wavenumber cutoff comparable to the Fermi momentum (see e.g. Barton 1979). Therefore,
far from vanishing as ω2

p → ∞, the surface energy actually diverges. Even for fixed finite ωp

it would diverge as λ → 0, just as we have seen it do for weak reflectors.
While σ is barely affected by relativity and retardation, the interior can remain important

also to essentially relativistic phenomena. For instance, (ii), an oscillating halfspace with
a nondispersive refractive index ν emits radiation, and the power flowing into the material
remains finite as ν → ∞ (Barton and North 1996); whereas considering perfect reflection
(infinite ν) from the outset one would have expected that waves could not penetrate the material
at all.

Indeed one might well conjecture that contributions to electromagnetic energies from the
interiors of perfect reflectors are the rule rather than the exception.
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Appendix A. The moments JN (λ)

In the CP regime the convergent JN (ρ) are easily approximated through the expansion (2.6)
of f in inverse powers of 	ρ. The problem is to deal with the opposite VdW regime 	ρ � 1,
and in particular with the JN (λ). One reasonably convenient method takes

∫
dρ . . . under the

integral
∫

dx . . . in (2.1), and changes from the integration variable ρ to y = x/	ρ:

JN (ρ) = 	6−N

π

∫ ∞

0
dx exp(−2x)h(x)xN−6

∫ x/	ρ

0
dy

y−N+5

(y2 + 1)2
.

Given 	ρ � 1 one can split
∫

dx at say x = s = √
	ρ. For x > s one expands the inner

integral appropriately to x/	ρ � 1; for x < s one expands exp(−2x)h(x)xN−6 in ascending
powers of x, appropriately to x � 1. All the resulting integrals are elementary, and when they
are combined the dummy parameter s naturally cancels, to yield (2.10)–(2.14).

Alternatively, one can find recursion relations that express the functions

LN (M) ≡ −π(2	)N+1

32	7
JN (ρ), M ≡ 2	ρ

as integrals over Ci(µ) and si(µ), and are easy to run through MAPLE, though forbiddingly
tedious by hand. The LN with even N evolve from the germ

β−1(M) ≡ −
∫ ∞

M

dµ

µ
[cos µCi(µ) + sin µsi(µ)] = 1

2

[
Ci(M)2 + si(M)2

]
and emerge as

L4(M) = M2

16
− 13

8
+ [sin MCi(M) − cos Msi(M)]

[
−M3

16
+

5M

4
− 3

M

]

+ [sin Msi(M) + cos MCi(M)]

[
−M2

4
+ 3

]
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L2(M) = 1

16
− 1

M2
+ [sin MCi(M) − cos Msi(M)]

[
−M

16
+

3

4M
− 1

M3

]

+ [sin Msi(M) + cos MCi(M)]

[
−1

8
+

1

M2

]
.

These relations are exact for all positive M .
Unfortunately the LN with odd N evolve from the germ

α−1(M) ≡
∫ ∞

M

dµ

µ
[sin µCi(µ) − cos µsi(µ)]

which the writer cannot express in closed form. However, it is not too difficult to show that

α−1(M) = si(M)Ci(M) − H(M)

H(M) ≡ 2
∫ ∞

M

dµ
sin µ

µ
Ci(µ) = −2

∫ M

0
dµ

sin µ

µ
Ci(µ).

This makes the recursion relations operable for M � 1, where −H(M) is a small correction
given by its

∫ M

0 dµ . . . version, with the integrand approximated appropriately to µ � 1. The
moments found by the split-range method have all been checked by such approximations for
odd N , together with the closed-form expressions for even N .

Appendix B. Failure of the cavity theorem for non-additive interactions

Interactions that are not pairwise additive invalidate the theorem. Many-body potentials and the
three-atom potential in particular are discussed for instance by Power and Thirunamachandran
(1985, 1994).

The disproof runs largely parallel to the proof in section 3.2; we give it with
minimal comment, using subscripts 3 to identify contributions from a three-body potential
d3r d3r ′ d3r ′′ U(r, r′, r′′), which affords the simplest counterexample. The argument turns on
the elementary combinatorics ensuring that every triplet of volume elements is counted only
once, and that in a triplet with one element fixed the other pair of elements is likewise counted
only once. Again the potential need only be translation invariant and symmetric in its three
arguments.

Evidently

B∗
3 = 1

3!

∫ ∫ ∫
(all space)

d3r d3r ′ d3r ′′ U(r, r′, r′′)

= 1
6 (in, in, in) + 1

6 (out, out, out) + 1
2 (in, in, out) + 1

2 (in, out, out). (B.1)

But now, underscoring to indicate that r is temporarily fixed in (in), we observe that

u3(r) = u3 = 1
6 (in, in, in) + 1

3 (in, in, out) + 1
6 (in, out, out). (B.2)

Then if we do integrate over (in), we find

V u3 = 1
6 (in, in, in) + 1

3 (in, in, out) + 1
6 (in, out, out). (B.3)

The energies B3b and B3c are given, and �B3b, �B3c are defined, by

V u3 + Sσ3 + �B3b ≡ B3b = 1
6 (in, in, in) (B.4)

B3c = 1
6 (out, out, out),

−V u3 + Sσ3 + �B3c ≡ B3c − B∗
3 = − 1

6 (in, in, in) − 1
2 (in, out, out) − 1

2 (in, in, out). (B.5)

Finally, on eliminating (in, in, in) and (out, out, out) from (B.3)–(B.5) one obtains

�B3b − �B3c = 1
6 {(in, out, out) − (in, in, out)} �= 0. (B.6)

�
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Appendix C. The Taylor series for g(ρ)

C.1. Volume and surface area

Recall the definitions (5.2) and (5.3) of g̃(ρ) and g(ρ), and consider g(ρ → 0), with
gn ≡ dng/dρn |ρ=0. Introduce the effectively one-dimensional delta function δS(r) confiningr

to the surface S of the body, and define n as the unit inward normal at r, so that∫
d3r χ(r)δS(r) . . . =

∫
S

dS . . . (C.1)

∇χ(r) = nδS(r). (C.2)

Obviously

g̃(0) =
∫

d3r χ2(r) =
∫

d3r χ(r) = V, g(0) = 4πV. (C.3)

To determine g1, start from

∂

∂ρ
g̃(ρ) =

∫ ∫
d3r d3r ′ χ(r)χ(r′)ρ̂ · ∇ρδ(r′ − r − ρ)

(hats specify unit vectors). Use ∇ρδ(r′ − r − ρ) = ∇rδ(r′ − r − ρ), and integrate by parts:

∂

∂ρ
g̃(ρ) = −

∫
d3r

[
ρ̂ · ∇χ(r)

] ∫
d3r ′ χ(r′)δ(r′ − r − ρ)

= −
∫

S

dS
(
ρ̂ · n

)
χ(r + ρρ̂) (C.4)

⇒ δ

δS

[
∂g

∂ρ

]
= −

∫
d	ρ

(
ρ̂ · n

)
χ(r + ρρ̂) ≡ −

∫
d	ρ

(
ρ̂ · n

)
χ(ρρ̂). (C.5)

For convenience, the last step has moved the origin to the point r on S.
As ρ → 0 one can replace the surface by its tangent plane, taken as the xy plane, with

the polar axis along n. Then
∫

d	 runs over the inward hemisphere, and ρ̂ · n = cos θ :

δg1

δS
= −2π

∫ 1

0
d cos θ cos θ = −π ⇒ g1 = −πS. (C.6)

C.2. Smooth surface elements

Consider (C.5) at a point r of a smooth surface element δS. In the tangent plane choose axes
that diagonalize the quadratic that locally approximates the equation of S. Write this equation
as

z = h(x, y) = 1
2

(
x2/R1 + y2/R2

)
(C.7)

where R1,2 are the principal radii of curvature. Then

χ(ρρ̂) = 3 {ρ3 − h(ρ1, ρ2)} = 3

{
ρ cos θ − 1

2R1
ρ2 sin2 θ cos2 φ

− 1

2R2
ρ2 sin2 θ sin2 φ + · · ·

}
. (C.8)

The argument of 3 is a quadratic in cos θ , whose roots show that 3 imposes the restriction

1 � cos θ � ρ

2

(
1

R1
cos2 φ +

1

R2
sin2 φ

)
≡ µ,
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y

x

n(q

q

) n(p)

2/Φ2/Φ

p

Figure C.1. The z axis is perpendicular to the plane of the paper.
The inward unit normals n(q), n(p) are drawn at points whose
coordinates are [x(q), y(q), z′] and [x(p), y(p), z] respectively.

whence

δ

δS

[
∂g

∂ρ

]
= −

∫ 2π

0
dφ

∫ 1

µ

d cos θ cos θ

= −
∫ 2π

0
dφ

1

2

{
1 − µ2 + · · · } = −π

{
1 − ρ2

32

(
3

R2
1

+
2

R1R2
+

3

R2
2

)
+ · · ·

}
.

Finally we differentiate twice with respect to ρ, take the limit ρ → 0 and express the result
as9

δg1

δS
= −π,

δg2

δS
= 0,

δg3

δS
= π

16

(
3

R2
1

+
2

R1R2
+

3

R2
2

)
(for smooth δS). (C.9)

It must be stressed that sharp edges do induce g2 �= 0; while the calculation for the cube
in section 10 shows that sharp vertices can add to g3 terms beyond those dictated by (C.9).

C.3. Edges

To determine g2 we start by differentiating χ as in (C.4), but twice running, which yields

∂2g̃

∂ρ2
= −

∫
S

dS

∫
S

dS ′ [ρ̂ · n(r)
] [

ρ̂ · n(r′)
]

δ
[
r′ − r − ρ

]
. (C.10)

Although in a somewhat roundabout way the delta function will ultimately reduce∫
S

dS
∫

S
dS ′ . . . to

∫
S

dS . . . , we cannot write down the result just yet. But we do know that in
the limit ρ → 0 an element δS can contribute only if it contains a sharp ridge. Accordingly we
envisage a locally straight and flat-sided wedge of opening angle �, shown in cross-section in
figure C.1, with the z axis perpendicular to the plane of the paper. Thus we have 0 < � < π

if the wedge is convex (as shown), and π < � < 2π if it is concave. To switch between them
one reverses the signs of both n(r) and n(r′). Since this leaves (C.10) unchanged, δg2/δL is
the same for a concave as for a convex wedge, i.e. it remains unchanged under � → 2π − �,
compatibly with the cavity theorem. Therefore it suffices to consider only 0 < � < π .

We require the contribution to (C.10) from an element δS containing an edge of length δL:∫
δS

dS · · · =
∫

δL

dz

{∫
dq +

∫
dp

}
. . . (C.11)

9 The ratio 3 : 2 between the numerators in g3 recurs in the normal-mode density determined by Balian and Duplantier
(1978). Deeper relations underlying the coincidence, if there are any, remain unexplored. For general background on
mode densities see Baltes and Hilf (1976).
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where q is measured perpendicularly to the edge along one flat, p along the other flat, and
similarly for

∫
δS

dS ′. Crucially, the double integration in (C.10) must straddle the edge, because
otherwise it merely reproduces the zero for locally smooth (edge-free) elements: in other words
contributions to (C.10) survive only if

∫
dS features

∫
dq while

∫
dS ′ features

∫
dp, or vice

versa. One reaches the same conclusion on observing that if r and r′ are both situated on the
same face (say on the face coordinatized by q), then the vector ρ = r −r′ too lies on that face,
so that ρ̂ · n(r) = 0 = ρ̂ · n(r′). Accordingly

δ
[
r′ − r − ρ

] → δ
[
z′ − z − ρ3

]
δ
[
x ′(q) − x(p) − ρ1

]
δ
[
y ′(q) − y(p) − ρ2

]
. (C.12)

Substitution from (C.11) and (C.12) into (C.10) yields

δ

δL

∂2g̃

∂ρ2
= −2

∫ ∞

0

∫ ∞

0
dq dp

(
ρ̂ · n(q)

) (
ρ̂ · n(p)

)
δ
[
x ′(q) − x(p) − ρ1

]
×δ

[
y ′(q) − y(p) − ρ2

]
. (C.13)

The remaining integrations are tedious. Choose the edge, i.e. the z axis, as the polar
axis, and let (ρ, θ, φ) be the spherical-polar components of ρ. One comparatively convenient
procedure scales (q, p) ≡ (ηρ, η′ρ), and changes variables to X = η′ +η, ξ = η′ −η. In effect
ρ has already cancelled from the right, so that we can replace ∂2g̃/∂ρ2 → g̃2. Eventually
these steps lead to

δg̃2

δL
= sin2 θ [cos (2φ) + cos(�)]

sin(�)

∫ ∞

0
dX

∫ X

−X

dξ δ

[
X − sin θ cos φ

cos(�/2)

]
δ

[
ξ − sin θ sin φ

cos(�/2)

]

= sin2 θ [cos (2φ) + cos(�)]

sin(�)
3

[
π

2
− �

2
− |φ|

]
(C.14)

which in turn yields the end-result

δg2

δL
=

∫
d	

δg̃2

δL
= 2

∫ π

0
dθ sin θ

∫ (π−�)/2

−(π−�)/2
dφ

sin2 θ

sin(�)

1

2
[cos(2φ) + cos(�)] ,

δg2(�)

δL
= 4

3
Z(�), Z(�) ≡ 1 +

π − �

tan(�)
.

(C.15)

One checks that this is indeed invariant under � → 2π − �. Observe that
δg2

δL
(� → 0) → 4π

3�
→ ∞,

δg2

δL
(� = π/2) = 4

3
while, appropriately to a smooth surface,

δg2

δL
(� = π − ε → π) → 4

3

{
1 +

ε

(−ε)

}
= 0.

Appendix D. The cylinder

D.1. Correlation function

Consider a right circular cylinder of radius a and infinite length L, centred on the z axis. We
require g/L.

Define ρ ≡ (σ, ζ ), k ≡ (κ, p) and r ≡ (s, z), where σ, κ, s are two-component vectors.
The characteristic function and the form-factor read

χ(r) = 3(a − s)

F (k) =
∫ ∞

−∞
dz exp(ipz)

∫ a

0
ds s

∫ 2π

0
dφ exp(iκs cos φ) = 2πδ(p)

2πa

κ
J1(aκ).
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We identify [2πδ(p)]2 = 2πδ(p)L, and find

g̃(ρ)

L
= 1

(2π)3

∫ ∞

−∞
dp exp(−ipζ)2πδ(p)

∫
d2κ exp(−iκ · σ)

(
2πa

κ

)2

J 2
1 (aκ)

= 2πa2
∫ ∞

0

dκ

κ
J 2

1 (aκ)J0(σκ).

Integrating over the polar angles (θ, φ) of ρ, with σ = ρ sin θ , one obtains

g(ρ)

L
= 2πa2

∫ ∞

0

dκ

κ
J 2

1 (aκ)

∫
d	ρ J0(ρσ) = (2πa)2

∫ ∞

0

dκ

κ
J 2

1 (aκ)

×
∫ π

0
dθ sin θJ0(ρκ sin θ).

The rightmost integral is standard (Abramowitz and Stegun 1965, equation (11.4.10)), and
leaves us with

g(ρ)

L
= (2πa)2 2

ρ

∫ ∞

0

dκ

κ2
J 2

1 (aκ) sin(κρ). (D.1)

Choosing dimensionless variables

z ≡ ρ/2a, x ≡ κa, m ≡ λ/2a (D.2)

we substitute (D.1) into (5.1) to find

B/L = −(nα)216π2a5
∫ ∞

m

dz f (2az)zG(z) (D.3)

where

G(z) ≡ ρg/L

8π2a3
= zg/L

(2πa)2
=

∫ ∞

0

dx

x2
sin(2zx)J 2

1 (x) = √
πz

∫ ∞

0

dx

x3/2
J1/2(2zx)J 2

1 (x).

(D.4)

Some manipulation of the generalized Weber–Schafheitlin integral on page 411 of Watson
(1944) yields

G(z) = 1

2π

∫ π

0
dφ

sin2 φ

sin(φ/2)

∫ ∞

0

dt

t
sin(2zt)J1(ωt), ω ≡ 2 sin(φ/2)

while Gröbner and Hofreiter (1958) give∫ ∞

0

dt

t
sin(2zt)J1(ωt) =

{
2z/ω for z < ω/2

ω/
[
2z +

√
4z2 − ω2

]
for z > ω/2.

On changing to the variable x = sin−1[(1/z) sin(φ/2)] the remaining integrations become
manageable though wearisome, and eventually one finds

G(z < 1) = z − z2 + z2K(z), G(z > 1) = zK(1/z) (D.5)

K(z < 1) ≡ 4

π

∫ 1

0
dy

√
1 − y2

[
1 −

√
1 − y2z2

]

= 1 − 4

π

∫ 1

0
dy

√
1 − y2

√
1 − y2z2. (D.6)

Then K(z) expands as

K(z < 1) = z2

8
+

z4

64
+

5z6

1024
+ · · · (D.7)

while K(1/z) expands similarly in powers of 1/z2.
There ought to be shorter ways to (D.5) and (D.6), but the writer has failed to find one.
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D.2. Energy

For the unrenormalized energy equations (D.3) and (D.5) yield

B

L
= −(nα)216π2a5

{∫ 1

m

dz f (2az)
[
z2 − z3 + z3K(z)

]
+

∫ ∞

1
dz f (2az)z2K

(
1

z

)}
.

(D.8)

As expected, the first two terms of the first integrand, if the integral were extended to infinity,
would contribute πa2u + 2πaσ = (V u + Sσ)/L. To obtain the renormalized energy one adds
and subtracts the corresponding integral

∫ ∞
1 dz . . . :

�B

L
= −(nα)216π2a5

{∫ 1

m

dz f (2az)z3K(z) +
∫ ∞

1
dz f (2az)

[
−z2 + z3 + z2K

(
1

z

)]}
.

(D.9)

By hindsight, we subdivide

�B = �Bdiv + �Bconv

into a divergent part �Bdiv proportional to J5(λ), plus a convergent part �Bconv. To this end
we first split

K(z) = z2/8 + L(z), L(z → 0) ∼ z4

and then rearrange (D.9) into

�B/L = −(nα)216π2a5

{
1
8

∫ ∞

m

dz f (2az)z5 +
∫ 1

m

dz f (2az)z3L(z)

+
∫ ∞

1
dz f (2az)

[ − z2 + z3 + z2K(1/z) − 1
8 z5

]}
. (D.10)

The first integral inside the curly brackets yields

�Bdiv/L = −(nα)216π2a5 1

8

∫ ∞

m

dz f (2az)z5 = −(nα)2 π2

32a
J5(λ)

� − (nα)2 3π2	

128a

{
log

(
1

2	λ

)
− γ +

65

24
+ O

[
	λ log

(
1

2	λ

)]}
. (D.11)

Crucially, to leading order in λ/a � 1 we may approximate the middle integral in (D.10)
by replacing

∫ 1
m

dz . . . → ∫ 1
0 dz . . . , since f z3L remains finite as z → 0; and then, accurately

to leading order in 	a � 1, we may further replace10 f → fCP. The same replacement is
also made (as always) under

∫ ∞
1 dz . . . , where we then change the integration variable from z

to 1/z, so that this integral too runs from 0 to 1. These steps lead to

�Bconv/L � −(nα)2 23π

32a2

∫ 1

0
dz

[
1

z4
L(z) − 1

8
+ z2 − z3 + z3K(z)

]

= − (nα)2 23π

32a2

{
− 1

24
+

∫ 1

0
dz

[
1

z4
L(z) + z3K(z)

]}
= 0 (D.12)

showing that

�B/L = �Bdiv/L +
(nα)2

a2
× {terms that vanish with 	λ and/or 1/	a} ,

10 While this sequence of approximations can prove that �B/L lacks terms of order 1/a2, it cannot estimate the
correction invoked in the middle expression in (11.1). One might be tempted to try and do so by repeating the present
calculation with the second term on the right of (2.6); but then m → 0 would induce a divergence. Estimating the
correction evidently requires more analysis than it would warrant at this stage.
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as claimed in section 11.
No deep reasons are apparent for the zero in (D.12). To verify it one first substitutes

from (D.6) and then integrates over z before y to derive∫ 1

0
dz z3K(z) =

∫ 1

0
dz

{
z3 − 4z3

π

∫ 1

0
dy

√
1 − y2

√
1 − y2z2

}
= 1

4
− 32

45π
. (D.13)

In

N ≡
∫ 1

0

dz

z4
L(z) =

∫ 1

0

dz

z4

{
1 − z2

8
− 4

π

∫ 1

0
dy

√
1 − y2

√
1 − y2z2

}
one integrates by parts twice with respect to y; eventually this yields

N =
∫ 1

0
dz

{
1

z4

[
1 − z2

8
−

√
1 − z2 − 3z2

8
√

1 − z2

]
− 2

π

∫ 1

0

dy(
1 − y2z2

)3/2

×
[

− y2

4
(1 − y2)3/2 +

3y2

8
(1 − y2)1/2 − y

8
sin−1(y) +

y3

2
sin−1(y)

]}

= − 5

24
+

32

45π
(D.14)

where the single integral is elementary, and the double integral becomes manageable if∫ 1
0 dz/

(
1 − y2z2

)3/2 = 1/
√

1 − y2 is performed first. Equations (D.13) and (D.14) then
confirm (D.12).

Looking back over the calculation, we see that in order to prove the pure Casimir terms
absent, the approximation f → fCP is sufficient, and perfectly legitimate. The true potential f

is needed only to determine J5(λ), i.e. �Bdiv/L as given by (D.11); if fCP were used for this
purpose too, then one would conclude, wrongly, that �B/L = �BCP/L, where

�BCP/L = −(nα)2 23π

128aλ
(true but inapplicable). (D.15)

Appendix E. On the quantum electrodynamics of continuum models

Very briefly, we recall from I the Hamiltonian for a nondispersive dielectric, and sketch how
our present dispersive model relates to standard quantum electrodynamics. Both layouts are
designed to facilitate perturbative calculations to low orders. In the process we review the
traditional frequency cutoff 1/λ̃ implemented in I, which the writer now thinks is misconceived
(for the reasons explained in section 1, and near the end of section E.1 below).

Here one must mention the fundamental work of Renne (1971a, b) on discrete assemblies
of harmonic oscillators, formulating a granular nearly-real-world quantum theory of dispersive
dielectrics. To this theory the dispersive continuum model is but an approximation, appropriate
within limits visible from our motivation of the geometric cutoff ρ > λ.

E.1. Nondispersive dielectric, and some generalities

Given a body with characteristic function χ(r) and frequency-independent dielectric
constant ε, we define the dielectric function ε(r) = εχ(r) + (1 − χ(r)). The Hamiltonian
density reads11

H(r) = H0(r) + �H(r) (E.1)

11 This section works in the pseudo-Coulomb gauge, where divA vanishes except on surfaces of discontinuity of
ε(r). The next section works with minimal coupling in the ordinary Coulomb gauge. Recall that α is an atomic
polarizability, and not the fine-structure constant e2/4π � 1/137.
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H0 = (D2 + B2)/2, �H(r) = −γ

2
χ(r)D2(r), γ ≡ 1 − 1/ε � 4πnα. (E.2)

To calculate perturbatively in the Schrödinger picture, we expand D exactly as if the body
were absent,

D(r) = i
∑
s=1,2

∫
d3k

k1/2

4π3/2
εks exp(ik · r)aks + (Hermitean conjugate); (E.3)

note

H0 =
∫

d3r H0 =
∑
s=1,2

∫
d3k k

(
a+

ksaks + 1/2
) ; (E.4)

and treat Hint = ∫
d3r �H(r) as the perturbation. In sums over virtual photons,

∫
d3k . . .

would diverge without a cutoff.
The first-order shift, given by a sum over virtual single-photon states, reads

�E(1) = 〈Hint〉 =
∫

d3r 〈0 |�H(r)| 0〉 = −(γ /2)V 〈0∣∣D2
∣∣0〉. (E.5)

It is the model’s attempt to reproduce the sum of the self-energies (Lamb shifts) of the separate
volume elements of the body, recognizable as such because (a) being proportional to α it is
of order e2, and (b) being proportional to n it is additive, i.e. unaffected by any interaction
between different elements. In I, �E(1) could not be specified satisfactorily: its connection
with Lamb shifts becomes explicit and persuasive only on introducing dispersion, as in the
work of Milonni and Lerner (1992), Schaden et al (1998) and Milonni et al (1999). However,
we discard �E(1) in any case, because it is manifestly irrelevant to the binding energies B that
we we wish to consider.

Subject to the wavenumber cutoff exp(−λ̃k) imposed in I, the second-order shift, given
by a sum over virtual two-photon states, eventually turns out to be

B = �E(2) = − 1
2 (nα)2

∫ ∫
d3r d3r ′ χ(r)χ(r′)f (ρ, λ̃)

= − (nα)2 1
2

∫ ∞

0
dρ f (ρ, λ̃)ρ2g(ρ) (E.6)

f (ρ, λ̃) = 4

π2ρ7

∫ ∞

λ̃/ρ

dx
12x4 − 8x2 + 12

(x2 + 1)6
. (E.7)

One verifies that f (ρ, 0) = fCP(ρ) = 23/4πρ7, while f (0, λ̃) = 48/7π2λ̃7. But there is no
good reason why the potential at small distances should be represented specifically as f (ρ, λ̃):
in fact this would be a thoroughly misleading way to mimic the consequences of dispersion,
which for small ρ	 causes the true potential f (ρ) to modulate, not into f (ρ, λ̃), but into the
quite different function fVdW(ρ) = CVdW/ρ6. The differences are drastic: with fVdW instead
of f (ρ, λ̃), the integral (E.6) diverges unless we impose some other cutoff quite unrelated to
dispersion, like the condition ρ > λ motivated in section 2. In other words, consequences
of (E.6) and (E.7) featuring λ̃ cannot be trusted, not even semi-quantitatively.

Clearly, any model worth its keep must incorporate dispersion, compatibly with causality,
and from the start. If one wishes to concoct a nondispersive model nevertheless, then the (very
poor) best one can do is to rewrite (E.6) with fCP(ρ), and restrict the integral to ρ > λ. For a
sphere for instance this yields (7.6), where the pure Casimir term is correct, but where all the
other terms diverge more strongly than they should, i.e. more strongly than in (7.3).

However, (E.6) does show that perturbative QED yields identically the same energies that
one gets from two-body potentials f (ρ), provided the f (ρ) are chosen consistently with the
continuum model for the material, whatever the shortcomings of the latter.
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E.2. Dispersive dielectric

Nondispersive models are relatively easy to handle, because the only dynamical degrees of
freedom are those of the Maxwell field. By contrast, dispersion depends on additional degrees
of freedom carried by the material, and fog descends unless these are introduced explicitly. For
the material envisaged in the text one can adopt a hydrodynamic model12 with mechanical (i.e.
not explicitly electromagnetic) harmonic restoring forces. This model features a continuous
fluid with mass and charge densities nm and ne; the displacement of the fluid from equilibrium
is ξ(r), defined only inside the body and treated as small enough for the equations of motion
to be linearized ξ; and there is an immobile overall-neutralizing background charge density
−ne, so that the charge and current densities read −nedivξ and neξ̇. The canonical conjugate
of ξ(r) is written Π(r): for a neutral fluid it would equal nmξ̇(r). This section omits factors
χ(r).

In the Coulomb gauge the Hamiltonian density reads

H = H0 + Hfluid + Hint + HCoulomb. (E.8)

H0, given by (E.2), describes the free Maxwell field in empty space;

Hfluid = 1

2nm
Π2 +

nm	2

2
ξ2 (E.9)

Hint = − e

2m
(Π · A + A · Π) +

ne2

2m
A2 (E.10)

HCoulomb = − 1
2 �nedivξ where − ∇2� = −nedivξ. (E.11)

We treat the frequency 	 as already renormalized, and suppress the attendant armoury of
counterterms (Barton 2000). The zero-order Hamiltonian is

∫
d3r {H0 + χ(r)Hfluid}.

Here one meets a problem that, fortunately, perturbation theory can sidestep, albeit only
by virtue of the restoring forces. Nonperturbatively one would want to quantize through the
exact normal modes of the system; to determine them one must first solve the coupled linear
equations for A and ξ, equations that require boundary conditions on ξ at the surface of the
body; whence one must choose between (a) imposing plausible boundary conditions from the
start, which makes the sequel somewhat arbitrary, or (b) trying to establish such conditions
through prior arguments, which are always excessively tedious, and not wholly convincing
either, seeing how crude the underlying model is in the first place.

By contrast, perturbatively we can proceed as follows. The Maxwell field is quantized as
if in free space, validating (E.3) in particular. To quantize the matter field we take advantage
of the assumption that the mechanical restoring forces are local, i.e. that the Hamiltonian
contains no gradients of the ξi , and impose the standard equal-time commutation rule13

[ξi(r), Ij (r′)] = iδij δ(r −r′). No special provisions are required for points on the boundary.
We need merely imagine the body divided into small cells, treat each cell as having its own
material degrees of freedom (namely the ξi at some point in the cell), proceed with the
calculation, and at the end take the limit where the cell volumes shrink to zero and the number
of cells goes to infinity. This is just the prelapsarian way to canonical methods for continuous
systems (see e.g. Wentzel 1949). Each cell behaves like a localized harmonic oscillator; to
order e2 the perturbation

∫
d3r (Hint + HCoulomb) delivers their separate Lamb shifts; to order e4

12 Nonrelativistic versions of such models have been explored in some detail to describe VdW images reflected by
dielectric surfaces (Barton 2000), and (without restoring forces) surface effects in metallic plasmas (Barton 1979).
13 Here it is crucial that there are no constraints forcing ξ(r) to be purely longitudinal or purely transverse. In this one
respect it is actually easier to work with the full Maxwell field than with nonrelativistic approximations using only
the instantaneous Coulomb potential. The latter make it possible and convenient to write ξ = −∇Ψ, but have to be
paid for by quite complicated commutators for the scalar displacement-potential K (see e.g. Barton 1979, 2000).
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it delivers their mutual interactions14; and the final limit reproduces precisely the continuum
model considered in the text.

Appendix F. Numbers for solid Ar

We aim to show that, even though our model is so crude, it can talk sense at least as regards
orders of magnitude. For comparison we choose argon (at T = 0), an archetypal molecular
solid, free of the complications stemming from the intense zero-point vibrations that plague
solid helium. We use atomic units (au): unit energy = 2 Ry = 27.2 eV = 4.35 × 10−11 erg,
unit distance = 0.529 Å, and lightspeed c = 137 au. The lattice is close packed, with a packing
fraction (pf) = π

√
2/6 = 0.740; call the nearest-neighbour distance Rnn, this being twice the

radius of notional hard spheres packing the lattice.
Measurements (Beaumont et al 1961) yield

n−1 = 22.6cm3/mole = (6.33 au)3/atom ⇒ Rnn = 2

[
3

4π

(pf)

n

]1/3

= 7.11 au

Binding energy = 7.73 × 1010 erg/mole = 2.96 × 10−3 au/atom ≡ E0

⇒ uexp = −E0/n = −1.16 × 10−5 au.

To the optical data at zero frequency (Sonntag 1976a) we apply the Clausius–Mossotti
formula:

ε ≡ ε(ω = 0) = 1.56 ⇒ 4πnα = 3(ε − 1)

ε + 2
= 0.472

nα = 0.0376, (nα)2 = 1.41 × 10−3.

Hence it need not be unreasonable to work only to leading order in nα. For the electrostatic
polarizability of the atom these solid-state data15 imply α = 9.55 = (2.12)3 au.

For the excitation frequency we adopt 	 = 12 eV = 0.44 au, as suggested by
measurements on the dielectric function of the solid (Sonntag 1976b); and we choose the
cutoff distance λ so as to validate16,17

uexp = u = −(nα)22πJ2(λ) � (nα)2 π	

2λ3
⇒ λ = 4.38 au.

The dimensionless parameter 	λ/c (which we have assumed to be small, and have written
elsewhere in natural units as 	λ) is given by

	λ/c = 	λ/137 = 0.0141.

At this point the model predicts a surface energy

σ = J3(λ)

4J2(λ)
| u |≈ 3λ

8
| u |= 1.91 × 10−5 au.

14 The cutoff ρ > λ excludes O(e4) contributions from the separate Lamb shifts.
15 The atomic Stark shift yields αatom = 11.8. The energies of the strongest atomic dipole excitations are close to
0.43, practically the same as the solid-state value 	 we are just about to quote. For the atomic data see Radzig and
Smirnov (1985).
16 There is no simple way to foresee whether λ thus determined should turn out greater than Rnn, or less. In favour
of λ > Rnn one might adduce that α2f (Rnn) overestimates the magnitude of the true interatomic potential (since the
core is not completely hard):

∣∣uexp
∣∣ would then be fitted with a minimum separation λ larger than the true Rnn. On

the other hand, λ < Rnn is favoured because perturbation theory calculates the two-body correlation function g from
a uniform density: this will underestimate the true gf near ρ = Rnn, effectively underestimating the attraction, and
requiring a smaller minimum separation to reproduce

∣∣uexp
∣∣.

17 Through (1.2) and (2.1) these values of 	 and λ determine a potential whose implications can be considered
directly for a crystal, rather than for our continuum model. Thus one might compare uexp with the contribution from
the 12 nearest neighbours, namely with unn = −(1/2)12α2f (Rnn)n. From 	Rnn/c = 0.0228 � 1 we see that
f � fVdW = 3	/4R6

nn and unn = −(9/2)(nα)2	/nR6
nn � −0.55 × 10−5 au, about half of uexp.
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With λ replaced by Rnn this formula would give 3.1 × 10−5 au. Apparently σ has not
been measured, but serious calculations (Adamson 1990) yield σcrystal = 47 erg cm−2 =
3.0 × 10−5 au, depending only weakly on the crystal face.

Finally we digress to quote the calculated three-body contribution u3 to the binding energy
(Bell and Zucker 1976), namely u3/u � −0.07, which might be taken as a measure of
deviations to be expected from the cavity theorem.

Note added in proof. As regards comparing the definitions of renormalization in conventional field theory and in this
paper (cf the italicized comment towards the end of section 1), the writer is grateful to Michael Bordag for stressing
another point of view that does reveal a similarity. Each theory introduces certain parameters that are treated essentially
as classical, and as given before quantum mechanics is brought to bear: conventionally these are the bare masses and
coupling constants, while here they describe the body through a, α, 	, λ, and (if one so chooses) u and σ . Then an
obvious analogy appears in that the subdivision B = V u+Sσ +�B allows some (though not all) nominal divergences
to be absorbed by redefining u and σ . (Of course, there are equally obvious differences: here the divergences are only
nominal, and the calculation of B could be construed as determining u and σ ab inito, rather than as renormalizing
pre-assigned values.)
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